

# Workbook



# **Statistics Workbook**

# **Table of Contents**

| Confidence Intervals for Proportions                   |   |  |
|--------------------------------------------------------|---|--|
|                                                        |   |  |
| Constructing Confidence Intervals                      | 2 |  |
|                                                        |   |  |
| Determining the Sample Size in Estimating a Proportion |   |  |

# **Confidence Intervals for Proportions**

# **Constructing Confidence Intervals**

Our goal is to estimate a population proportion, denoted by  $\,p\,$  . We do this by using the sample proportion and building a confidence interval around that sample proportion.

The standard error of the sample proportion is distributed normally,  $\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ , and we use this to estimate the population standard error.

We create a confidence interval for p using the sample proportion, like this:  $\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ .

#### Conditions:

- 1) The sample needs to be a random sample.
- 2) There must be at least 10 successes and 10 failures so that the sampling distribution of the sample proportion will be approximately normal.
- **3)** The individual trials must be independent.

#### **Example** (solution in the recording)

In order to estimate the unemployment rate in New York, 200 adults are sampled, and it is found that 24 are unemployed.

- a. Construct a 95% confidence interval for the state unemployment rate.
- b. What is the standard error of the sample proportion?

#### Questions

- 1) 200 apartments in Orlando were randomly sampled, 48 of which have security systems.
  - a. Construct a 95% confidence interval for the proportion of apartments in Orlando with security systems. Explain what it means.
  - Suppose that there are 80,000 apartments in Orlando.
     Construct a 95% confidence interval for the number of apartments with security systems.
- 2) 300 employees were randomly selected at a large national company to be polled, and 180 of them prefer a flex work schedule.
  - a. Construct a 95% confidence interval for the proportion of all employees that prefer a flex work schedule.
  - b. How would the interval length change if the confidence level were lower?
  - c. How would the length of the interval change if the sample size were increased?
- 3) The following confidence interval for the proportion of drivers who need vision correction was derived from a random sample of 400 drivers: 0.08 .
  - a. How many drivers in the sample need vision correction?
  - b. What level of confidence was used to create this confidence interval?
- **4)** During election season, 840 people were asked whether they planned to vote for Candidate A and 546 people answered in the affirmative.
  - The survey reported an error estimate of  $\pm 3\%$ .
  - What's the confidence level of this maximum error?
- 5) In a sample of 300 women aged 35-40 in Italy, 140 were married, 80 were divorced, 60 were single, and 20 were widows.
  - a. Find a 90% confidence interval for the proportion of divorced women among women aged 35-40 in Italy.
  - b. Find a 99% confidence interval for the probability that a 35-40 year old woman in Italy is unmarried (divorced, single or widowed).
- 6) A random sample is taken from a certain population.
  - The rate of success in the samples was 10%, and a 95% confidence interval was constructed. The length of the interval is 8.3156%.
  - What was the sample size?



## **Answer Key**

- **1)** a. (0.18081, 0.29919)
- b. (14,465, 23,935)
- **2)** a. (0.54456, 0.65544)
- b. The interval will be shorter, because  $Z^*$  will be smaller.
- c. The Length of the confidence interval will be smaller, because the standard error of the sample proportion will be smaller.
- **3)** a. 52
- b. 99.7%
- 4) 93.17%
- **5)** a. (0.22467, 0.30866)
- b. (0.45914, 0.60753)

**6)** 200

# **Determining the Sample Size in Estimating a Proportion**

### **Theory**

This chapter discusses how to determine the sample size when estimating a proportion in a given population. The researcher determines the confidence level in advance and the maximum statistical error and uses this to plan for the sample size.

We use 
$$\hat{p}\pm z^*\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
, and the fact that the maximum value of  $\hat{p}\left(1-\hat{p}\right)$ , will occur when  $\hat{p}=0.5$ .

#### **Example** (solution in the recording)

We want to estimate the unemployment rate in Gainsville at a 90% level of confidence and with an estimation error of at most 4%.

What sample size is needed?

#### Questions

- 1) Every month, the White House estimates the percent of support for the president. What sample size is necessary to obtain a 95% level of certainty that the estimate will not deviate from the actual support rate by more than 3%?
- The Department of Labor wants to know the percentage of households with a broadband internet connection. How many households should be sampled, if we want a 90% level of certainty for a confidence interval no more than 8% long?
- 3) A television station wishes to estimate its prime time viewing rate.

  The goal is a 95% level of certainty that the maximum difference between the estimator and the real rating will not be greater than 4%.

  What sample size is necessary?
- 4) A public health organization is examining the chances of a vaccinated person getting influenza. It wants a 98% confidence level and for its estimation error to not exceed 3%.
  - a. How many vaccinated people should be sampled?
  - b. Suppose they sampled using the sample size from part a and found that 15% of the sample got the flu. Construct a 98% confidence interval for the probability that a vaccinated person gets the flu.
  - c. What is the maximum estimation error for part b? Why is it less than 3%?



#### **Statistics Workbook**

# **Answer Key**

- **1)** 1068
- **2)** 423
- **3)** 601
- **4)** a. 1503 b. (0.12892, 0.17181) c. 0.02181